
Description of “Sheep” (Subsurface Hydrology Environmental 
Elementary Processes)

Preface

We disclaim all liability for direct, incidential or consequential damage resulting from 
the use of this program.

Introduction
All  the  calculations  performed  by  this  program  are  based  either  on  the  MUALEM/  VAN 
GENUCHTEN  (van  Genuchten,  1980)  model  of  water  retention  and  unsaturated  hydraulic 
conductivity or on the bimodal water retention and conductivity function of Durner, Priesack and 
Peters (1994, 2006, 2008). Whenever possible, analytical solutions are used to tackle the so-called 
”Elementary Soil Hydrologic Processes” (Kutilek and Nielsen,1994, Bohne, 2005).

This program is not another numerical model to simulate soil water dynamics and no attempt was 
made to simulate soil water behavior under field conditions. 

This description expects users to be familiar with some basic ideas of soil hydrology.

Subject matters of the program

1. Input of VAN GENUCHTEN parameters  and saturated soil hydraulic conductivity (van 
Genuchten, 1980) :mandatory

2. Calculation of  (2.1) water content, (2.2) differential soil water capacity  C,  (2.3)  
unsaturated soil hydraulic conductivity COND, (2.4)  relative hydraulic conductivity RELK, 
(2.5) diffusivity D, and (2.6)  dK/dθ from soil water pressure head.

3. Calculations of the same variables as mentioned above from soil water content. For instance, 
instead of calculation of θ(h) the inverse h(θ) is calculated.

4. Matrix flux potential between two reference pressure values.
5. Steady-state vertical flow from or to groundwater table (numerical solution).
6. Drying of bare soil by evaporation (Gardner, 1959).
7. Internal drainage using groundwater table as bottom boundary condition (Gardner, 1962 

Crank, 1975 ).
8. Unit gradient transient drainage (Sisson et al., 1980).
9. Ponded and disc infiltration (Barry-Haverkamp and Philip equations, Barry et al. 1995)
10. Green and Ampt infiltration (Jury et al., 1991)
11. Midpoint pressure head between irrigation furrows (Lomen and Warrick, 1978).
12. Horizontal one-dimensional steady-state groundwater flow (Busch, Luckner, Tiemer, 1993).
13. Radial symmetric steady-state groundwater flow to or from a well.
14. Steady-state piston flow of a solute considering linear sorption and first-order decay (Jury et 

al. 1991)
15. Transient solute transport through a soil column (step input) for steady-state water flow 

(Breakthrough curve, Lapidus and Amundson, 1952).
16. Transient solute transport through a soil column (pulse input) for steady-sate water flow 

(Jury and Sposito solution, Jury et al., 1991).
17. Two-dimensional horizontal transient solute transport in one-dimensional horizontal steady-

state groundwater flow (Csanady solution, Kinzelbach, 1986)



18. Hydrologic total discharge or groundwater recharge estimation (Miegel et al.,2013)
19. Steady-state field drainage (Bodenwasserregulierung, 1985, Skaggs, 1999) 
20. Non steady-state field drainage (Storchenegger and Bohne, 2005, Widmoser, 2010)

Using the program

In the beginning, the main menu is written to the screen. First of all, the first menu point must be 

taken that reads soil hydraulic parameters from the screen or uses default values.  Thereafter, you 

may use the other items as mentioned above. All the results are written to the screen AND to a file. 

The user is requested to choose the name of that file. This file may be used as an input file for 

other codes (e.g. gnuplot) to prepare graphs. 

The program is written in FORTRAN. As processing of character expressions is rather tedious in 

this old FORTRAN version, we tried to simplify things somewhat. For that reason you have to 

type “1”  for ”yes” and “0”  for ”no”. All the exits throughout the program are exits to the main 

menu, except the exit in the main menu itself, which terminates the performance of the program. 

To decide what kind of input is requested in a given situation, it is strongly recommended to read 

the program output to the screen carefully.

 1. Input of soil hydraulic parameters

Measured or PTF-based soil hydraulic parameters may be used to meet parameter requirements.

To obtain parameters from pedotransfer functions, the ANN-based code ROSETTA (Schaap et al., 

2001)  may be used.  Another  option is  using the  pedotransfer  function  proposed by Zacharias 

(Zacharias  and Wessolek,  2008) or  the parameter  estimation  from grain  size distribution after 

Nimmo et al., 2007.  The Vereecken, Zacharias and the Nimmo functions are supported on this 

website by spreadsheet files.

Still  another  option is  using default  values  known for  soil  texture classes  of the German soil 

texture  classification  (Renger  et  al.,  2009).  Furthermore,  the  data  base  UNSODA provides  a 

collection of empirical soil data and the code "Twostep", which is part of this website, is suitable 

to estimate soil hydraulic parameters from observations. The common code to derive soil hydraulic 

parameters from observations is the program RETC.

A particular feature of the unimodal Mualem-vanGenuchten model of hydraulic conductivity is its 

steep descend near saturation in case the parameter n is close to its minimum value of 1.05. In this 

case, the modified formulation of the model (Schaap and van Genuchten, 2006) should be used 

provided that the same formulation was used beforehand for parameter estimation. This problem is 



of less importance when bimodal soil hydraulic functions (Durner, 1994, Priesack and Durner, 

2006, Peters and Durner, 2008) are used.

2. Van Genuchten/Mualem model

Water content ϴ is calculated from soil water pressure head h according to van Genuchten (1980). 
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where  θr,  θs, α, n are parameters and h is the soil water pressure head, taken positive here. In this 

program, soil water pressure head taken with its correct sign is named hp.  Equation (2) gives the 

specific water capacity. 

To obtain closed-form equations for hydraulic conductivity, the parameter m is related to n by 
m= 1-1/n. This version of the program is not able to consider any arbitrary m (m>0) not related to 
n. 
Following the MUALEM theory, hydraulic conductivity may be calculated by

       K S o h =S o
x {∫o

So

1
h S 

dS

∫
o

1
1

h S 
dS }

2

     (3)

K    hydraulic conductivity, cm/d
Ks           saturated soil hydraulic conductivity
h    soil water pressure head, taken positive in unsaturated soil, cm

S    effective saturation, 
rs
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x    parameter of tortuosity, recommended value:  0.5
θ            volumetric water content, cm3 cm-3

s,i,r,0      indices: saturated, initial, residual, reference, respectively

 Van Genuchten (1980) developed a closed-form equation of the soil hydraulic conductivity
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where m is related to n by m = 1 – 1/n

Several researchers found the predicition of hydraulic conductivity to be greatly improved when 

the matching point is not taken at zero suction, but instead at some different value hp,m of pressure 

head. Using this option replaces the saturated hydraulic conductivity throughout the program by an 

apparent value of it which is given by

K s ,app=
Kobs(h pm)

K rel , predicted(h pm)

where  Kobs(hpm)  is  any  known  value  of  hydraulic  conductivity  and  Krel,predicted(hpm)  is  the 

prediction based upon Eq. (4) for Ks=1.

The hydraulic conductivity can be calculated as a function of water content as well:
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Since the diffusivity is defined by D=K/C it is given by
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If C is already known it is more convenient to calculate D from D = K/C.

Unit gradient methods as mentioned below require knowledge of dK/dθ which is given by
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with

P=S 1/m ;T=S x−1 ; Q= 1−P 
m

;R=1−Q  

The above mentioned equations are realized in the subroutine VANGEN.

The calculations described are either performed for a single value of h given by input or a list is 

generated. In the latter case, lower and upper boundaries and the increment have to be specified. 

The list is written to the screen and to the output  file.



3. Inverted van Genuchten relation

This option uses the same equations as mentioned above. Since h is not given by input, it is first 

calculated from
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 4. Calculation of matrix flux potential

Matrix flux potential (Kutilek and Nielsen,1994) is defined by

Φ h1 ,h2 =∫
h1

h2

K  h dh (11)

This potential is useful to calculate infiltration (Elrick, Reynolds 1992, White et al., 1992). For 

h1 = 0 it is recommended to use Menu point 9. In the program, Eq. (11) is evaluated numerically 

using Simpson’s procedure.

 5. Steady-state vertical flow above groundwater table

The DARCY - equation for vertical steady-state flow is given by

q=−K h p  dh p

dz
1                                 (12)

z vertical coordinate, upward positive, z=0 at groundwater table, cm
q flux, cm/d (units must be consistent with z and K), upward positive
hp        soil water pressure head, sign taken correctly.

The separation of variables yields two ordinary differential equations,  which can be chosen 

alternatively. Beginning at the groundwater table, both are solved numerically.

Option 1:

dh p= q
K h p

1dz                       (13)

Option 2:

            
dz=

1
q

K h p 
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dh p
                  (14)

Equation (13) yields values of pressure head at defined elevations z above groundwater table and 

equation (14) calculates the elevation z for defined values of hp .

Use of Equ. (13) requires controlling the increment ∆z. Please note that q>0 means upward flow of 

water while  q<0 indicates downward movement. In case of using Equ. (14) a list of  q values is 

generated. For that reason no value of  q has to be specified. The numerical procedure continues 

until a lower threshold value of hp is reached. To suggest such a value, hp is first calculated from 



the midpoint water content between permanent wilting point (hp=-15800 cm) and water content at 

hp = - 63 cm.

The numerical solution of Eq. (13) was compared to an analytical solution, which is available for 

exponential functions of hydraulic conductivity. No significant deviations were detected. 

6. Evaporation from bare soil

Gardner (1959) distinguished two stages of drying bare soils by evaporation. During the first stage, 

evaporation depends on external atmospheric  conditions.  In the second stage,  real  evaporation 

depends no longer on external conditions but on flow conditions in soil. In this stage, the water 

content at the soil surface θ0  remains constant and the flux q0 from inner soil to the soil surface 

decreases with time, t. As long as the initial water content at the lower boundary is maintained, the 

flux to the soil surface is given by

q  t =θ i−θ 0  D θ0 

πt
(15)

Integration of Eq.(15) yields the cumulative amount of evaporation 

E  t =2 θ i−θ0  D θ 0 t

π
(16)

Since θ0 is constant, D is constant as well.

7. Internal drainage

In the first step, this option calculates the water storage W (unit cm) of a soil profile in equilibrium 

with groundwater table. The term “equilibrium” denotes a condition of zero flux anywhere in the 

soil  profile.  Water  storage  in  a  soil  column  of  length  L (that  means  that  L represents  the 

groundwater depth) is then given by 

W ∞=∫
o

L

θ h p z   dz (17)

The integration is done numerically by Simpson’s procedure.

In the second step, the program calculates non-steady-state internal drainage. At time t=0 the soil 

profile is assumed to be (almost) saturated. Under field conditions, a certain amount of entrapped 

air is always present. On top of the soil column a flux boundary condition is assumed, given by 



q = 0.  The  groundwater  table  represents  the  bottom  of  the  soil  column.  Internal  drainage  is 

calculated by an iteration procedure for a given drainage time t (days). 

The amount of water drained from the soil profile in infinite time is given by

Q∞ =θ s L−W ∞ (18)

This equation indicates that  Q is of the same unit as  W or  L. If we denote the amount of water 

drained from the soil profile during drainage time  t by  Qt we may use the fraction  Qt  /Q∞ as an 

indicator of the drainage ratio.

To estimate Qt , the analytical solution to the flow equation given by Gardner (1962) is used. His 

solution reads

Q t =Q∞ [1−∑
j=0

j=3

 1

π 22 j+12
exp − Dc2 j+1 π 2 t

4L2 ] (19)

Mathematically, the upper limit of the sum should be infinite and not merely “3”. Since the value 

of the series converges rapidly, consideration of 4 terms will do. The equation holds for constant 

diffusivity D only. To correct for variable D an iterative procedure is used. Eq.( 19) is calculated 

for an effective constant Dc that is best represented by the mean according to CRANK (1975)

DC=
1.85

θ i−θ f 
1.85∫D θ  θ i−θ f 

0 .85
dθ (20)

For integration, again SIMPSON’s rule is used. In this equation is θi the initial soil water content 

which is assumed to be near saturation. θf represents the final water content, which is unknown in 

the beginning. To calculate D from Eq. (6), in the first step of iteration complete drainage during 

the time chosen is assumed and approximated by hp= - L/2. After calculation of Qt, the improved 

final water content is given by

θ f =θi−Q t / L

In the following iteration steps the results  from the previous steps are used.  The procedure is 

terminated when the difference between estimated and calculated final water content values is very 

small.



8. Unit gradient transient drainage

Internal drainage of a very long soil  column (or a very deep groundwater table,  respectively) 

continues for a very long period of time and only seldom this will be of interest. Most users are 

interested in soil water storage of a soil  profile of  limited depth. In soil  profiles over a deep 

groundwater  table  the  bottom  boundary  condition  may  be  approximated  by  the  unit-gradient 

assumption. That is, the hydraulic gradient is assumed to be unity. Numerical experiments have 

shown this assumption to be reliable for depths between 1 and 2 m and for drainage times between 

t=1 and t=100 days. SISSON et al. (1980) developed the analytical solution

dK
dθ

=
z
t

        (21)

For the left-hand side, Eq. (7) is used. Since there is no way to solve the resulting equation for 

θ explicitly, an implicit solution has to be used, which is performed by the procedure NEWTON. 

Water content values of soil compartments (thickness 1 cm) are then integrated by means of the 

SIMPSON subroutine to give the water storage between the soil surface and the required depth. 

9. Infiltration
Preparations
In this section of the program, at first the matrix flux potential is calculated, which is defined by

Φ=∫
h0

h
i

K  h  dh (22)

ho Soil water pressure head at the infiltrating surface
hi Initial soil water pressure head prior to infiltration.

To solve the integral, we felt it appropriate to use a stepwise analytical solution rather than the 

SIMPSON procedure. For exponential hydraulic conductivity, Gardner proposed

K  h  =K s exp −αh  (23)

Please note that h>0 is used here. The analytical solution to Eq. (22) using Eq.(23) is given by

Φhb
ht =

K s

α
exp  α ht−hb   (24)



ht h at top of an interval
hb h at bottom of an interval
hm h at mid-point of the interval

For the purpose of integration the x-axis is subdivided into N intervals, each having a different  αj 

Substituting (23) into (22) and summing over all j’s, leads to the following numerical approximation 

for the matric flux potential

Φ=∑
j=1

N K s

α j
exp α j h j+1/2−expα j h j−1/2 

The conductivity function (23) can be expressed in terms of the vanGenuchten/Mualem parameters 

by using suitable expressions for αj. Equating the two conductivity expressions at the midpoint hm 

of each interval yields

=
1
hm

ln  K hm

K s
  

where K(hm) is the hydraulic conductivity according to Eq. 4 ( or 8, resp.), evaluated at

hm=
1
2 h j−1 /2h j1/2 

To account for hysteresis approximately, the parameter α may be doubled (Luckner et al., 1989).
Next, sorptivity (Philip, 1987, Jury et al., 1991, White et al., 1992) is obtained from

S 0=1.82 Δθ Φ (25)

where  Δθ=θ h0 −θ hi 

One-dimensional vertical infiltration

In case of ponded infiltration, the final water content is assumed to be 0.95θs. The constant 0.95 is 

an empirical value to account for entrapped air. Now the truncated infiltration formula after  Philip 

(1987, see Jury et al., 1991) can be applied yielding the cumulative infiltration

I=S 0 t +At (26)

One of the problems inherent in the truncated equation consists in the time-dependent relationship 

between A and the hydraulic  conductivity  K(h0) at  top of the soil  profile.  The computer code 

described here assumes  A = 0.6 K(h0).

BARRY, HAVERKAMP et al. (1995) have proposed an infiltration equation containing only 



parameters, which are not time-dependent and retain a sound physical meaning. The explicit form 

of this equation is given by Eq. 27:

I =1T − exp [
−2T

12T /6
−

2T
3

]


1T
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−2T
3

[1−1−
8T 5 /2

]2T ln 1T /

In this equation, the capital letters I and T  indicate dimensionless variables. The relationships 

between dimensionless and dimensioned variables are given by 

I =qi−K i t 
2 K 0−K i

S 0
22K 0 hsurf Δθ

T=
2 t K 0−K i  ²

S 0 ²2 K 0 hsurf 
(28)

qi infiltration rate
hsurf height of water column ponded on the soil surface
hstr air-entry point on the wetting branch of the water retention curve
t infiltration time
Ks                   saturated soil hydraulic conductivity
index i            initial value (prior to   infiltration)
index 0           value at the infiltrating surface

Δθ=θ h0 −θ h i  ; K 0 =K  h0  ; K i =K hi 

The term   γ represents the expression

γ=
2K 0hsurf −hstr Δθ

S 22K 0 h surf Δθ
(29)

and should range between 0 and 1.

The parameter hstr is not an independent soil parameter. According to FUENTES et al. (1992), it can 

be approximated by 

λs=
1

K 0
∫
−∞

h0

2 K h −K i

 K 0−K i  S eh 
−1 K h dh (30)

and

hstr =λs

K 0−K i

K 0

(31)

Se effective saturation (or relative water content, RWC)

To apply these equations, first γ and hstr are calculated because they do not depend on infiltration 



time. Again the procedure of SIMPSON is used to integrate Eq.(29). 

FUENTES derived from his  theory  restrictions  concerning the  value  of  VAN-GENUCHTEN- 
parameters. If these restrictions are not met, the values of γ and hstr are  outside their permitted 
boundaries  and  default  standard  assumptions   apply.  The  parameter  hstr is  said  to  be  rather 
insensitive. 

Three-dimensional infiltration from a disc infiltrometer

Smettem et al.(1994) developed an approximate solution to infiltration from the disc of a tension 

infiltrometer. Their equation reads

i3D=i1D0.75 r
S 0 ² t

Δθ
(31a)

r radius of the disc, cm
i3D three-dimensional cumulative volume of infiltrated water, cm3

i1D one-dimensional cumulative volume of infiltrated water, cm3

S0        sorptivity, (cm time -0.5 )
t          time 

In this case, h0 will be in general different from zero.

10. Green & Ampt infiltration

From  many  applications  it  is  known,  that  the  Green  &  Ampt  infiltration  equation  yields 

disappointing results (Kutilek, Nielsen 1994). However, comparisons between the Green&Ampt 

method and results of the numerical model HYDRUS 1D have shown sufficient agreement for 

sandy and loamy soils over shallow groundwater table. We recommend using an empirical soil 

water pressure head h0 to calculate the initial soil water content θ(h0) and to evaluate the pressure 

head at the wetting front hF  from 

h F=
1
K s

∫
0

h0

K h dh (32)

(Kutilek, Nielsen 1994, Neumann’s formula). Recommended values of h0 are given by:

Texture Class 
(U.S. Soil Conservation Service)

h0

cm
Sand 11
Loamy Sand 14
Sandy Loam 29
Sandy Clay Loam 45
Loam 55
Clay Loam 58

The Green&Ampt infiltration is given by



t  L =
Δθ
K s

[ L−hF ln
LhF

hF
] ; I =LΔθ                                     (33)

t time, days
Ks saturated soil hydraulic conductivity, cm/day
L depth of the wetting front, cm

           ∆θ   =  θs –θ(h0)
I cumulative infiltration, cm

11. Soil moisture under furrow irrigation

Furrow irrigation is a process involving simultaneous non-steady state flow of water in  furrows 

and two-dimensional infiltration into soil. Irrigation systems should be designed to provide access 

to water for plant roots everywhere between irrigation furrows and to avoid large losses of water 

due to drainage.

Important parameters of a furrow irrigation system are:
• Spacing of furrows, L (cm),
• source strength Q (Liters per day and per meter furrow length),
• depth of root water uptake z0 , cm,
• length of furrows (not considered here), and
• daily evapotranspiration u, cm/d

To give only a  first  crude approximation,  a  method developed by Lomen and Warrick (1978, 

Warrick et al. 1979) is used here to calculate soil water pressure head near the soil surface at the 

midpoint between furrows. Since all the analytical solutions used here are based upon Gardner’s 

exponential  conductivity  function  (Eq.  23),  we  first  have  to  adjust  the  Gardner  hydraulic 

conductivity to the Mualem/ vanGenuchten soil hydraulic conductivity. The simplest way to do 

this is to match both at a selected value  hmatch. The computer code uses  h = 60 cm as matching 

point. This yields for Gardner’s α

α=−
1

hmatch

ln  K hmatch 

K s


The midpoint soil water pressure (cm) is given by

    hM=
1
α

ln { Q
K s L [exp −0. 24 αL 

ru

αz0
exp αz0 −1 ]} (34)

ru  represents the fraction of evapotranspiration relative to total water supply (mm/mm).


